Crypto On the Cell

Neil Costigan

School of Computing,
Dublin City University.

neil.costigan@computing.dcu.ie +353.1.700.6916

PhD student / 2nd year of research.

Supervisor : - Dr Michael Scott.
IRCSET funded.

Talk Overview

» Cell background

* Our work

* Other work

* Folding@home

* Other processors
- Our next steps

Playstation 3

* Background
= Sony, IBM, Toshiba

* Cell Broadband Engine
* Multipurpose
* Linux

- Development environment

©2005 Sony Computer Entertainment Inc. All rights reserved.
Design and specifications are subject to change without notice.

Cell Broadband Engine

* A 9-way multiprocessor

* One main 64-bit PPE processor
= Power Processor Element, 2 hardware threads
= Good at control tasks, task switching, OS-level code

- 8 SPE processors
= Synergistic Processor Element
= Good at compute-intensive tasks

N .'&)O) : : v-v- '
o R :.ﬁwﬂgmm_mé ot o

mJ T _
l_nl‘.-_ , i ..r.u.'.
Hiind o

ll‘-~

8.

._.mmm mﬁcm bugilogi

—_
O
@
7
@
3]
O
—_
Q.
)
=
o
c
w
g
c
©
o
T
©
O
—_
o
[
&

E ﬁmzmom
~—---- PR3 R3320 --

Py

SPE

L1

PPE

XDR DRAM
Interface

EIB

IO
Interface

Sl

Coherent
Interface

SPE

SPE

SPE

Playstation Vs Cell Blade

6 vs 8 SPE
* Cell blade can be configured for dual Cell

- All 16 SPEs visible to each PPE

Whats in a name ?

SPU / SPE ?
PPU / PPE ?

WPower Processor Element

64-bit PowerPC Architecture

RISC core

Tradition virtual memory ~ PowerPC Processor Element (PPE)
subsystem R T |
Supports Vector/SIMD

PowerPC Processor Unit (PPU)

instruction set
Runs OS, manages system |

resources etc
PowerPC Processor Storage Subsystem (PPSS)

L2 Cache

W Synergistic Processor Element

- RISC core

- 256kb local store

- 128-bit, 128 entry
register file

Synergistic Processor Element (SPE)

Synergistic Processor Unit (SPU)

- Vector/SIMD

* MFC controls DMAs
to/from Local Store Memory Flow Controller (MFC)

over EIB

So what ?

- 128 * 128-bit registers is the
key.

- Up to 4 * 32-bit integer
operations in one clock cycle.
» 2 instruction pipelines

* Overlapped DMA

* hote
= it is just a 16x16bit
multiplier

fma vr, v1, v2, v3

Hardware Security

- Secure processing vault (SPV):

* Runtime secure boot

- Hardware root of secrecy

 Hardware random number generator (RNG):

Roadmap

* Fast double precision float.
= Available in the 2.1 Simulator.

* Recently announced SDK 3.0 and x86 add on
boards.

* More local store memory in SPUs

* More SPUs

* Clock speeds > 5Ghz

Usage models

PPE

PPE |

’ SPE) TN FAA AR EARE A AR
PPE ‘.‘/‘«\-,‘HF :r}‘/‘ i "”\‘\:‘»\‘\““"1{'\";
A | of miRITGY

Application Code VPEG Encoding

)
’

il
1\

SPE o SPE —y SPE

¥ SPE

h 4

SPE

Multistage varallel wm

Build process

Code : ASM like ADD

Assembly-like example of a speed up technique when adding
a 128-bit value to a 64-bit value where we know there is no
need tfo manage an overflow.

This technique is used in summing partial products inside the
big number multiply.

vector unsigned int out s, 1n al28, 1in ab64;
vector unsigned int sum, cO, tO0;

~c0 = spu genc(in al28, 1in a64); // generate carry bits
_sum = spu add(in al28, in a64); // add
_t0 = spu slgwbyte(cO0, // shift quadword left 4 bytes

4) ;
_out s = spu _add(_sum, t0); // add in the carry

Pipelines

* Compliers not optimal
- Pipelines are not 'equal’

= Load/store : Odd

= Shifts etc.: Odd / 4

= Integer multiply : Even /7
* Hand code intrinsics.

DMA

* The major programming task is DMA management

- SPE pulls data to LS

* Processes

* Pushes results back to main memory
- Signals completion.

* Overlapping !

What we are doing...

* Looking at the Cell BE for number crunching

* Using the vector processors to improve crypto
performance.

* Currently with native vector multi-precision
library

OpenSSL project

* PKI & crypto toolkit.
» Ships with all Unix variants (Linux, MacOSX etc.)
* Apache, MySQL etc.

- Ability to offload some algorithms via engine interface
(like a plug-in)

- We choose RSA with CRT
= Analysis of SSL points to it being ~95% of session
overhead.
= Tnteresting as it has two independent mod_exp() that
can be run in parallel.

RSA / CRT

INPUT: p, g, I0, dmgl, dmpl, igmp
OUTPUT: r0

<- I0 mod g
<- (rl "dmgl) mod g
<- I0 mod p
<- (rl "dmpl) mod p
<- r0 —ml
r0 < 0 then
ro <- r0 + p
end if
rl <- r0 - 1gmp
r0 <- rl mod p
rl <- r0 - g
r0 <- rl + ml

By counting clock cycles we get 14.87 4096-bit signs/sec

Architecture 1

RSA : reference / Intel

RSA Linux P4 2.5Ghz MacOSX 2.3Ghz Duo
key length sign/sec sign/sec
1024-bits 151.1 297 .4

2048-bits 26.7 50.4

4096-bits 4.4 7.6

* OpenSSL speed / multi 6 / elapsed time

* Linux : Intel 32-bit P4 2.4Ghz

* MacOSX 10.4 : Intel Core 2 Duo 32-bit 2.3Ghz
* Using native OpenSSL with ASM

RSA : PPU vs. 1 SPU

RSA PPU

key length sign sign/sec
1024-bits 0.003435s 291.2
2048-bits 0.017541s 57.0
4096-bits 0.109793s 9.1

* OpenSSL speed on PPU vs. 1 SPU
* using IBM-MPM
* 3.2GHz Cell.

1 SPU
sign
0.005655s
0.015636s
0.070915s

sign/sec
176.8
64.0
14.1

RSA : PPU vs. 6 SPU

RSA PPU 6 SPU

key length sign sign/sec sign sign/sec
1024-bits 0.000724s 384.5 0.001906s 524.7
2048-bits 0.002600s 71.7 0.003033s 329.7
4096-bits 0.089455s 11.2 0.011925s 83.9

* OpenSSL speed on PPU vs. 6 SPUs
* using IBM-MPM
* 3.2GHz Cell, 6 parallel processes.

RSA : 2 PPU vs. 16 SPU*

RSA 2 PPU 16 SPU

key length sign sign/sec sign sign/sec
1024-bits 0.001270s 787 .5 0.001509s 745.1
2048-bits 0.006805s 146.9 0.001664s 601.0
4096-bits 0.053944s 22.8 0.005762s 173.6

* OpenSSL speed on cell dual PPU with 16 SPUs
* using IBM-MPM
* 3.2G6Hz Cell, 16 parallel processes.

* * numbers are from one run by IBM.

Architecture 2

INPUT: p, g, I0, dmgl, dmpl, igmp
OUTPUT: rO0

PPU SPU 1
rl <- I0 mod g

THREAD ml <-(rl ~dmgl)mod g
rl <- I0 mod p
THREAD r0 <-(rl “dmpl) mod p
WAIT
r0 <- r0 —ml
if r0 < O then
r0 <- r0 + p
r0 - igmp
rl mod p

r0 - g
rl + ml

Architecture 2

RSA : PPU vs. 2 SPU parallel

RSA PPU 2 SPU

key length sign sign/sec sign sign/sec
1024-bits 0.003435s 291.2 0.005208s 192.0
2048-bits 0.017541s 57.0 0.009775s 102.3
4096-bits 0.109793s 9.1 0.037392s 26.7

* OpenSSL speed on PPU vs. 2 SPU parallel mod_exp()
* using IBM-MPM
» 3.2GHz Cell.

Next steps...

* OpenSSL native uses Karatsuba method but IBM
Library doesn't. (x3 ?)

* Plan is to port MIRACL to get this

* Look at OpenSSL pre-release for improving ALL
algorithms.

- 256bit mod multiply

Closer..

- the fundamental speed up is to muldvd() MADD()
r=a*b+c /(64bit* 64bit + 64bit = 128bit)

- Remember there is no 128bit C type

* we have a CPT of .7 for about 140 instructions
* current killer is dependency stalls related to shifting in
and out of vectors for the unsigned long long type

- exercise now is to unroll big number code (e.g. 1024bit) and
propagate through the crypto lib to

= optimise the carry management

= drop vector in/out stalls

= reduce the register loads for constants (the
splat patterns)

Multiply 1

al3.b2 az2.b?
a3.b3 az.b3 al.b3

Time tool...

45
456789
56
567890
6’/
678901
78
7890
89
8901

78
89
--0123
—-—=45
-—06789
-—-0123
-——456789

$9,32896

$1,-112(S1)
$1,$1,-112

$10, SCONSTANT AREA+0

$11,32896

$12, SCONSTANT AREA+16

$9,1543

57,8 (51)
$11,1029
$16,0($1)

a
a

$3,53,955
$4,54,$8
$4,54,4
$3,53,%4
$4,$3,8
$2,54,87,8%2
52,0(56)

Other work

IBM numbers symmetric

Running DES on the Cell
/ Dag Arne Osvik

* Dag Arne Osvik @ SPEED

* Bitsliced implementation of DES
= 128way parallelism per SPU
= Sboxes optimized for SPU instruction set

- 4 Gbit/sec = 226 blocks/sec per SPU

» 32 Gbit/sec per Cell chip

* Can be used as a cryptographic accelerator (ECB,
CTR, many CBC streams)

Breaking DES on the Cell
/ Dag Arne Osvik

* Reduce the DES encryption from 16 rounds to
the equivalent of ~9.5 rounds, by shortcircuit
evaluation and early aborfs.

* Performance:
= 108M=2"26.69 keys/sec per SPU
= 864M=2"29.69 keys/sec per Cell chip

Comparison to FPGA

Expected time to break:
- COPACOBANA
= ~9 days
=€8,980
= A year Yo build
- 52 PlayStation 3 consoles
= ~9 days
=£€19,500 (at US$500 each)
= Off the shelf

Running MD5 on the Cell
/ Dag Arne Osvik

- 32bit addition and rotation, boolean functions

* - Directly supported with 4waySIMD

- - Bitslice is slow: 128 adds require 94
Instructions

* Many streams in parallel hide latencies

* Calculated compression function performance: Up
to 15.6 Gbit/s per SPU

Running AES on the Cell
/ Dag Arne Osvik

- > 2.1 Gbit/s per SPU (~3.8 GHz Pentium 4)
- ~17 Gbit/s for full Cell, almost 13 Gbit/s for PS3
* CBC implementation only a little slower.

AES crypto analysis / Ken Roe

* Cell optimised AES took 35% of the time of x86
equivalent to search a key space.

* Price ratio at 3:1

Folding@home.

* "Understand protein folding, misfolding, and
related diseases”

* “the PS3 takes the middle ground between GPU's
(extreme speed, but at limited types of WU's)
and CPU's (less speed, but more flexibility in
types of WU's)."

Cell vs Rest FLOPS/Watt

Intel Amd Ati r590 Nvidea g80 Ageia physx PSP allegrex
clovertown winsor

Transistots

Chip area

Power (W)

Chip freq

Total SP GFLOPS

GFLOPS/W

Thank you |

Questions ?

